42
22

Hedging with Neural Networks

Abstract

We study neural networks as nonparametric estimation tools for the hedging of options. To this end, we design a network, named HedgeNet, that directly outputs a hedging strategy. This network is trained to minimise the hedging error instead of the pricing error. Applied to end-of-day and tick prices of S&P 500 and Euro Stoxx 50 options, the network is able to reduce the mean squared hedging error of the Black-Scholes benchmark significantly. We illustrate, however, that a similar benefit arises by simple linear regressions that incorporate the leverage effect. Finally, we show how a faulty training/test data split, possibly along with an additional 'tagging' of data, leads to a significant overestimation of the outperformance of neural networks.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.