ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.08379
8
265

Iteratively Pruned Deep Learning Ensembles for COVID-19 Detection in Chest X-rays

16 April 2020
S. Rajaraman
Jenifer Siegelman
P. Alderson
Lucas S. Folio
L. Folio
Sameer Kiran Antani
ArXivPDFHTML
Abstract

We demonstrate use of iteratively pruned deep learning model ensembles for detecting pulmonary manifestation of COVID-19 with chest X-rays. This disease is caused by the novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus, also known as the novel Coronavirus (2019-nCoV). A custom convolutional neural network and a selection of ImageNet pretrained models are trained and evaluated at patient-level on publicly available CXR collections to learn modality-specific feature representations. The learned knowledge is transferred and fine-tuned to improve performance and generalization in the related task of classifying CXRs as normal, showing bacterial pneumonia, or COVID-19-viral abnormalities. The best performing models are iteratively pruned to reduce complexity and improve memory efficiency. The predictions of the best-performing pruned models are combined through different ensemble strategies to improve classification performance. Empirical evaluations demonstrate that the weighted average of the best-performing pruned models significantly improves performance resulting in an accuracy of 99.01% and area under the curve of 0.9972 in detecting COVID-19 findings on CXRs. The combined use of modality-specific knowledge transfer, iterative model pruning, and ensemble learning resulted in improved predictions. We expect that this model can be quickly adopted for COVID-19 screening using chest radiographs.

View on arXiv
Comments on this paper