Papers
Communities
Organizations
Events
Blog
Pricing
Search
Open menu
Home
Papers
2004.07740
Cited By
v1
v2 (latest)
Really Useful Synthetic Data -- A Framework to Evaluate the Quality of Differentially Private Synthetic Data
16 April 2020
Christian Arnold
Marcel Neunhoeffer
SyDa
ELM
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Really Useful Synthetic Data -- A Framework to Evaluate the Quality of Differentially Private Synthetic Data"
8 / 8 papers shown
Title
Generating tabular datasets under differential privacy
G. Truda
DiffM
66
6
0
28 Aug 2023
30 Years of Synthetic Data
Joerg Drechsler
Anna Haensch
72
16
0
04 Apr 2023
Statistical Data Privacy: A Song of Privacy and Utility
Aleksandra B. Slavkovic
Jeremy Seeman
58
27
0
06 May 2022
Benchmarking Differentially Private Synthetic Data Generation Algorithms
Yuchao Tao
Ryan McKenna
Michael Hay
Ashwin Machanavajjhala
G. Miklau
SyDa
105
87
0
16 Dec 2021
Winning the NIST Contest: A scalable and general approach to differentially private synthetic data
Ryan McKenna
G. Miklau
Daniel Sheldon
SyDa
92
127
0
11 Aug 2021
Synthetic Data -- Anonymisation Groundhog Day
Theresa Stadler
Bristena Oprisanu
Carmela Troncoso
93
161
0
13 Nov 2020
Differentially Private Synthetic Data: Applied Evaluations and Enhancements
Lucas Rosenblatt
Xiao-Yang Liu
Samira Pouyanfar
Eduardo de Leon
Anuj M. Desai
Joshua Allen
SyDa
74
67
0
11 Nov 2020
Private Post-GAN Boosting
Marcel Neunhoeffer
Zhiwei Steven Wu
Cynthia Dwork
199
29
0
23 Jul 2020
1