ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.07633
19
15

A Methodology for Creating Question Answering Corpora Using Inverse Data Annotation

16 April 2020
Jan Deriu
Katsiaryna Mlynchyk
Philippe Schlapfer
Álvaro Rodrigo
D. V. Grunigen
Nicolas Kaiser
Kurt Stockinger
Eneko Agirre
Mark Cieliebak
ArXivPDFHTML
Abstract

In this paper, we introduce a novel methodology to efficiently construct a corpus for question answering over structured data. For this, we introduce an intermediate representation that is based on the logical query plan in a database called Operation Trees (OT). This representation allows us to invert the annotation process without losing flexibility in the types of queries that we generate. Furthermore, it allows for fine-grained alignment of query tokens to OT operations. In our method, we randomly generate OTs from a context-free grammar. Afterwards, annotators have to write the appropriate natural language question that is represented by the OT. Finally, the annotators assign the tokens to the OT operations. We apply the method to create a new corpus OTTA (Operation Trees and Token Assignment), a large semantic parsing corpus for evaluating natural language interfaces to databases. We compare OTTA to Spider and LC-QuaD 2.0 and show that our methodology more than triples the annotation speed while maintaining the complexity of the queries. Finally, we train a state-of-the-art semantic parsing model on our data and show that our corpus is a challenging dataset and that the token alignment can be leveraged to increase the performance significantly.

View on arXiv
Comments on this paper