ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.06894
6
5

Human Evaluation of Interpretability: The Case of AI-Generated Music Knowledge

15 April 2020
Haizi Yu
Heinrich Taube
James A. Evans
L. Varshney
ArXivPDFHTML
Abstract

Interpretability of machine learning models has gained more and more attention among researchers in the artificial intelligence (AI) and human-computer interaction (HCI) communities. Most existing work focuses on decision making, whereas we consider knowledge discovery. In particular, we focus on evaluating AI-discovered knowledge/rules in the arts and humanities. From a specific scenario, we present an experimental procedure to collect and assess human-generated verbal interpretations of AI-generated music theory/rules rendered as sophisticated symbolic/numeric objects. Our goal is to reveal both the possibilities and the challenges in such a process of decoding expressive messages from AI sources. We treat this as a first step towards 1) better design of AI representations that are human interpretable and 2) a general methodology to evaluate interpretability of AI-discovered knowledge representations.

View on arXiv
Comments on this paper