ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.05795
6
125

Rethinking Differentiable Search for Mixed-Precision Neural Networks

13 April 2020
Zhaowei Cai
Nuno Vasconcelos
    MQ
ArXivPDFHTML
Abstract

Low-precision networks, with weights and activations quantized to low bit-width, are widely used to accelerate inference on edge devices. However, current solutions are uniform, using identical bit-width for all filters. This fails to account for the different sensitivities of different filters and is suboptimal. Mixed-precision networks address this problem, by tuning the bit-width to individual filter requirements. In this work, the problem of optimal mixed-precision network search (MPS) is considered. To circumvent its difficulties of discrete search space and combinatorial optimization, a new differentiable search architecture is proposed, with several novel contributions to advance the efficiency by leveraging the unique properties of the MPS problem. The resulting Efficient differentiable MIxed-Precision network Search (EdMIPS) method is effective at finding the optimal bit allocation for multiple popular networks, and can search a large model, e.g. Inception-V3, directly on ImageNet without proxy task in a reasonable amount of time. The learned mixed-precision networks significantly outperform their uniform counterparts.

View on arXiv
Comments on this paper