ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.05062
13
17

Joint Learning of Probabilistic and Geometric Shaping for Coded Modulation Systems

10 April 2020
Fayçal Ait Aoudia
J. Hoydis
ArXivPDFHTML
Abstract

We introduce a trainable coded modulation scheme that enables joint optimization of the bit-wise mutual information (BMI) through probabilistic shaping, geometric shaping, bit labeling, and demapping for a specific channel model and for a wide range of signal-to-noise ratios (SNRs). Compared to probabilistic amplitude shaping (PAS), the proposed approach is not restricted to symmetric probability distributions, can be optimized for any channel model, and works with any code rate k/mk/mk/m, mmm being the number of bits per channel use and kkk an integer within the range from 111 to m−1m-1m−1. The proposed scheme enables learning of a continuum of constellation geometries and probability distributions determined by the SNR. Additionally, the PAS architecture with Maxwell-Boltzmann (MB) as shaping distribution was extended with a neural network (NN) that controls the MB shaping of a quadrature amplitude modulation (QAM) constellation according to the SNR, enabling learning of a continuum of MB distributions for QAM. Simulations were performed to benchmark the performance of the proposed joint probabilistic and geometric shaping scheme on additive white Gaussian noise (AWGN) and mismatched Rayleigh block fading (RBF) channels.

View on arXiv
Comments on this paper