ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.04987
6
10

Automated Spelling Correction for Clinical Text Mining in Russian

10 April 2020
Ksenia Balabaeva
Anastasia A. Funkner
Sergey Kovalchuk
ArXiv (abs)PDFHTML
Abstract

The main goal of this paper is to develop a spell checker module for clinical text in Russian. The described approach combines string distance measure algorithms with technics of machine learning embedding methods. Our overall precision is 0.86, lexical precision - 0.975 and error precision is 0.74. We develop spell checker as a part of medical text mining tool regarding the problems of misspelling, negation, experiencer and temporality detection.

View on arXiv
Comments on this paper