ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.04386
11
8

Spectral Discovery of Jointly Smooth Features for Multimodal Data

9 April 2020
Felix Dietrich
Or Yair
Rotem Mulayoff
Ronen Talmon
Ioannis G. Kevrekidis
ArXivPDFHTML
Abstract

In this paper, we propose a spectral method for deriving functions that are jointly smooth on multiple observed manifolds. This allows us to register measurements of the same phenomenon by heterogeneous sensors, and to reject sensor-specific noise. Our method is unsupervised and primarily consists of two steps. First, using kernels, we obtain a subspace spanning smooth functions on each separate manifold. Then, we apply a spectral method to the obtained subspaces and discover functions that are jointly smooth on all manifolds. We show analytically that our method is guaranteed to provide a set of orthogonal functions that are as jointly smooth as possible, ordered by increasing Dirichlet energy from the smoothest to the least smooth. In addition, we show that the extracted functions can be efficiently extended to unseen data using the Nystr\"{o}m method. We demonstrate the proposed method on both simulated and real measured data and compare the results to nonlinear variants of the seminal Canonical Correlation Analysis (CCA). Particularly, we show superior results for sleep stage identification. In addition, we show how the proposed method can be leveraged for finding minimal realizations of parameter spaces of nonlinear dynamical systems.

View on arXiv
Comments on this paper