ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.04069
17
13

Convolutional neural net face recognition works in non-human-like ways

8 April 2020
P. Hancock
Rosyl S. Somai
V. Mileva
    CVBM
ArXivPDFHTML
Abstract

Convolutional neural networks (CNNs) give state of the art performance in many pattern recognition problems but can be fooled by carefully crafted patterns of noise. We report that CNN face recognition systems also make surprising "errors". We tested six commercial face recognition CNNs and found that they outperform typical human participants on standard face matching tasks. However, they also declare matches that humans would not, where one image from the pair has been transformed to look a different sex or race. This is not due to poor performance; the best CNNs perform almost perfectly on the human face matching tasks, but also declare the most matches for faces of a different apparent race or sex. Although differing on the salience of sex and race, humans and computer systems are not working in completely different ways. They tend to find the same pairs of images difficult, suggesting some agreement about the underlying similarity space.

View on arXiv
Comments on this paper