19
16

Binary and Multiclass Classifiers based on Multitaper Spectral Features for Epilepsy Detection

Abstract

Epilepsy is one of the most common neurological disorders that can be diagnosed through electroencephalogram (EEG), in which the following epileptic events can be observed: pre-ictal, ictal, post-ictal, and interictal. In this paper, we present a novel method for epilepsy detection into two differentiation contexts: binary and multiclass classification. For feature extraction, a total of 105 measures were extracted from power spectrum, spectrogram, and bispectrogram. For classifier building, eight different machine learning algorithms were used. Our method was applied in a widely used EEG database. As a result, random forest and backpropagation based on multilayer perceptron algorithms reached the highest accuracy for binary (98.75%) and multiclass (96.25%) classification problems, respectively. Subsequently, the statistical tests did not find a model that would achieve a better performance than the other classifiers. In the evaluation based on confusion matrices, it was also not possible to identify a classifier that stands out in relation to other models for EEG classification. Even so, our results are promising and competitive with the findings in the literature.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.