ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.03452
21
2
v1v2 (latest)

Strategies for Robust Image Classification

26 March 2020
Jason Stock
Andy Dolan
Tom Cavey
ArXiv (abs)PDFHTML
Abstract

In this work we evaluate the impact of digitally altered images on the performance of artificial neural networks. We explore factors that negatively affect the ability of an image classification model to produce consistent and accurate results. A model's ability to classify is negatively influenced by alterations to images as a result of digital abnormalities or changes in the physical environment. The focus of this paper is to discover and replicate scenarios that modify the appearance of an image and evaluate them on state-of-the-art machine learning models. Our contributions present various training techniques that enhance a model's ability to generalize and improve robustness against these alterations.

View on arXiv
Comments on this paper