ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.03070
9
2
v1v2 (latest)

Inferential Text Generation with Multiple Knowledge Sources and Meta-Learning

7 April 2020
Daya Guo
Akari Asai
Duyu Tang
Nan Duan
Ming Gong
Linjun Shou
Daxin Jiang
Jian Yin
Ming Zhou
ArXiv (abs)PDFHTML
Abstract

We study the problem of generating inferential texts of events for a variety of commonsense like \textit{if-else} relations. Existing approaches typically use limited evidence from training examples and learn for each relation individually. In this work, we use multiple knowledge sources as fuels for the model. Existing commonsense knowledge bases like ConceptNet are dominated by taxonomic knowledge (e.g., \textit{isA} and \textit{relatedTo} relations), having a limited number of inferential knowledge. We use not only structured commonsense knowledge bases, but also natural language snippets from search-engine results. These sources are incorporated into a generative base model via key-value memory network. In addition, we introduce a meta-learning based multi-task learning algorithm. For each targeted commonsense relation, we regard the learning of examples from other relations as the meta-training process, and the evaluation on examples from the targeted relation as the meta-test process. We conduct experiments on Event2Mind and ATOMIC datasets. Results show that both the integration of multiple knowledge sources and the use of the meta-learning algorithm improve the performance.

View on arXiv
Comments on this paper