We present a distributed optimization protocol that preserves statistical privacy of agents' local cost functions against a passive adversary that corrupts some agents in the network. The protocol is a composition of a distributed ``{\em zero-sum}" obfuscation protocol that obfuscates the agents' local cost functions, and a standard non-private distributed optimization method. We show that our protocol protects the statistical privacy of the agents' local cost functions against a passive adversary that corrupts up to arbitrary agents as long as the communication network has -vertex connectivity. The ``{\em zero-sum}" obfuscation protocol preserves the sum of the agents' local cost functions and therefore ensures accuracy of the computed solution.
View on arXiv