15
42

The RWTH ASR System for TED-LIUM Release 2: Improving Hybrid HMM with SpecAugment

Abstract

We present a complete training pipeline to build a state-of-the-art hybrid HMM-based ASR system on the 2nd release of the TED-LIUM corpus. Data augmentation using SpecAugment is successfully applied to improve performance on top of our best SAT model using i-vectors. By investigating the effect of different maskings, we achieve improvements from SpecAugment on hybrid HMM models without increasing model size and training time. A subsequent sMBR training is applied to fine-tune the final acoustic model, and both LSTM and Transformer language models are trained and evaluated. Our best system achieves a 5.6% WER on the test set, which outperforms the previous state-of-the-art by 27% relative.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.