ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.13874
15
17

A Low-cost Fault Corrector for Deep Neural Networks through Range Restriction

30 March 2020
Zitao Chen
Guanpeng Li
Karthik Pattabiraman
    AAML
    AI4CE
ArXivPDFHTML
Abstract

The adoption of deep neural networks (DNNs) in safety-critical domains has engendered serious reliability concerns. A prominent example is hardware transient faults that are growing in frequency due to the progressive technology scaling, and can lead to failures in DNNs. This work proposes Ranger, a low-cost fault corrector, which directly rectifies the faulty output due to transient faults without re-computation. DNNs are inherently resilient to benign faults (which will not cause output corruption), but not to critical faults (which can result in erroneous output). Ranger is an automated transformation to selectively restrict the value ranges in DNNs, which reduces the large deviations caused by critical faults and transforms them to benign faults that can be tolerated by the inherent resilience of the DNNs. Our evaluation on 8 DNNs demonstrates Ranger significantly increases the error resilience of the DNNs (by 3x to 50x), with no loss in accuracy, and with negligible overheads.

View on arXiv
Comments on this paper