ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.13726
17
120

Continual Learning with Node-Importance based Adaptive Group Sparse Regularization

30 March 2020
Sangwon Jung
Hongjoon Ahn
Sungmin Cha
Taesup Moon
    CLL
ArXivPDFHTML
Abstract

We propose a novel regularization-based continual learning method, dubbed as Adaptive Group Sparsity based Continual Learning (AGS-CL), using two group sparsity-based penalties. Our method selectively employs the two penalties when learning each node based its the importance, which is adaptively updated after learning each new task. By utilizing the proximal gradient descent method for learning, the exact sparsity and freezing of the model is guaranteed, and thus, the learner can explicitly control the model capacity as the learning continues. Furthermore, as a critical detail, we re-initialize the weights associated with unimportant nodes after learning each task in order to prevent the negative transfer that causes the catastrophic forgetting and facilitate efficient learning of new tasks. Throughout the extensive experimental results, we show that our AGS-CL uses much less additional memory space for storing the regularization parameters, and it significantly outperforms several state-of-the-art baselines on representative continual learning benchmarks for both supervised and reinforcement learning tasks.

View on arXiv
Comments on this paper