ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.12724
6
22

Predicting the Popularity of Micro-videos with Multimodal Variational Encoder-Decoder Framework

28 March 2020
Yaochen Zhu
Jiayi Xie
Zhenzhong Chen
ArXivPDFHTML
Abstract

As an emerging type of user-generated content, micro-video drastically enriches people's entertainment experiences and social interactions. However, the popularity pattern of an individual micro-video still remains elusive among the researchers. One of the major challenges is that the potential popularity of a micro-video tends to fluctuate under the impact of various external factors, which makes it full of uncertainties. In addition, since micro-videos are mainly uploaded by individuals that lack professional techniques, multiple types of noise could exist that obscure useful information. In this paper, we propose a multimodal variational encoder-decoder (MMVED) framework for micro-video popularity prediction tasks. MMVED learns a stochastic Gaussian embedding of a micro-video that is informative to its popularity level while preserves the inherent uncertainties simultaneously. Moreover, through the optimization of a deep variational information bottleneck lower-bound (IBLBO), the learned hidden representation is shown to be maximally expressive about the popularity target while maximally compressive to the noise in micro-video features. Furthermore, the Bayesian product-of-experts principle is applied to the multimodal encoder, where the decision for information keeping or discarding is made comprehensively with all available modalities. Extensive experiments conducted on a public dataset and a dataset we collect from Xigua demonstrate the effectiveness of the proposed MMVED framework.

View on arXiv
Comments on this paper