Towards Supervised and Unsupervised Neural Machine Translation Baselines for Nigerian Pidgin

Abstract
Nigerian Pidgin is arguably the most widely spoken language in Nigeria. Variants of this language are also spoken across West and Central Africa, making it a very important language. This work aims to establish supervised and unsupervised neural machine translation (NMT) baselines between English and Nigerian Pidgin. We implement and compare NMT models with different tokenization methods, creating a solid foundation for future works.
View on arXivComments on this paper