ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.12218
26
57

Comprehensive Named Entity Recognition on CORD-19 with Distant or Weak Supervision

27 March 2020
Xuan Wang
Xiangchen Song
Bangzheng Li
Yingjun Guan
Jiawei Han
ArXivPDFHTML
Abstract

We created this CORD-NER dataset with comprehensive named entity recognition (NER) on the COVID-19 Open Research Dataset Challenge (CORD-19) corpus (2020-03-13). This CORD-NER dataset covers 75 fine-grained entity types: In addition to the common biomedical entity types (e.g., genes, chemicals and diseases), it covers many new entity types related explicitly to the COVID-19 studies (e.g., coronaviruses, viral proteins, evolution, materials, substrates and immune responses), which may benefit research on COVID-19 related virus, spreading mechanisms, and potential vaccines. CORD-NER annotation is a combination of four sources with different NER methods. The quality of CORD-NER annotation surpasses SciSpacy (over 10% higher on the F1 score based on a sample set of documents), a fully supervised BioNER tool. Moreover, CORD-NER supports incrementally adding new documents as well as adding new entity types when needed by adding dozens of seeds as the input examples. We will constantly update CORD-NER based on the incremental updates of the CORD-19 corpus and the improvement of our system.

View on arXiv
Comments on this paper