ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.08646
11
18

LANCE: Efficient Low-Precision Quantized Winograd Convolution for Neural Networks Based on Graphics Processing Units

19 March 2020
Guangli Li
Lei Liu
Xueying Wang
Xiu Ma
Xiaobing Feng
    MQ
ArXivPDFHTML
Abstract

Accelerating deep convolutional neural networks has become an active topic and sparked an interest in academia and industry. In this paper, we propose an efficient low-precision quantized Winograd convolution algorithm, called LANCE, which combines the advantages of fast convolution and quantization techniques. By embedding linear quantization operations into the Winograd-domain, the fast convolution can be performed efficiently under low-precision computation on graphics processing units. We test neural network models with LANCE on representative image classification datasets, including SVHN, CIFAR, and ImageNet. The experimental results show that our 8-bit quantized Winograd convolution improves the performance by up to 2.40x over the full-precision convolution with trivial accuracy loss.

View on arXiv
Comments on this paper