ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.08489
14
11

An Analysis on the Learning Rules of the Skip-Gram Model

18 March 2020
Canlin Zhang
Xiuwen Liu
Daniel Bis
    NAI
ArXivPDFHTML
Abstract

To improve the generalization of the representations for natural language processing tasks, words are commonly represented using vectors, where distances among the vectors are related to the similarity of the words. While word2vec, the state-of-the-art implementation of the skip-gram model, is widely used and improves the performance of many natural language processing tasks, its mechanism is not yet well understood. In this work, we derive the learning rules for the skip-gram model and establish their close relationship to competitive learning. In addition, we provide the global optimal solution constraints for the skip-gram model and validate them by experimental results.

View on arXiv
Comments on this paper