ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.08333
9
249

Collaborative Video Object Segmentation by Foreground-Background Integration

18 March 2020
Zongxin Yang
Yunchao Wei
Yi Yang
    VOS
ArXivPDFHTML
Abstract

This paper investigates the principles of embedding learning to tackle the challenging semi-supervised video object segmentation. Different from previous practices that only explore the embedding learning using pixels from foreground object (s), we consider background should be equally treated and thus propose Collaborative video object segmentation by Foreground-Background Integration (CFBI) approach. Our CFBI implicitly imposes the feature embedding from the target foreground object and its corresponding background to be contrastive, promoting the segmentation results accordingly. With the feature embedding from both foreground and background, our CFBI performs the matching process between the reference and the predicted sequence from both pixel and instance levels, making the CFBI be robust to various object scales. We conduct extensive experiments on three popular benchmarks, i.e., DAVIS 2016, DAVIS 2017, and YouTube-VOS. Our CFBI achieves the performance (JF)of89.481.4Code:https://github.com/z−x−yang/CFBI.F) of 89.4%, 81.9%, and 81.4%, respectively, outperforming all the other state-of-the-art methods. Code: https://github.com/z-x-yang/CFBI.F)of89.481.4Code:https://github.com/z−x−yang/CFBI.

View on arXiv
Comments on this paper