ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.07734
25
20

A Novel Online Action Detection Framework from Untrimmed Video Streams

17 March 2020
Da-Hye Yoon
Nam-Gyu Cho
Seong-Whan Lee
ArXivPDFHTML
Abstract

Online temporal action localization from an untrimmed video stream is a challenging problem in computer vision. It is challenging because of i) in an untrimmed video stream, more than one action instance may appear, including background scenes, and ii) in online settings, only past and current information is available. Therefore, temporal priors, such as the average action duration of training data, which have been exploited by previous action detection methods, are not suitable for this task because of the high intra-class variation in human actions. We propose a novel online action detection framework that considers actions as a set of temporally ordered subclasses and leverages a future frame generation network to cope with the limited information issue associated with the problem outlined above. Additionally, we augment our data by varying the lengths of videos to allow the proposed method to learn about the high intra-class variation in human actions. We evaluate our method using two benchmark datasets, THUMOS'14 and ActivityNet, for an online temporal action localization scenario and demonstrate that the performance is comparable to state-of-the-art methods that have been proposed for offline settings.

View on arXiv
Comments on this paper