ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.05712
16
9

SynCGAN: Using learnable class specific priors to generate synthetic data for improving classifier performance on cytological images

12 March 2020
Soumyajyoti Dey
Soham Das
Swarnendu Ghosh
Shyamali Mitra
Sukanta Chakrabarty
N. Das
    GAN
    MedIm
ArXivPDFHTML
Abstract

One of the most challenging aspects of medical image analysis is the lack of a high quantity of annotated data. This makes it difficult for deep learning algorithms to perform well due to a lack of variations in the input space. While generative adversarial networks have shown promise in the field of synthetic data generation, but without a carefully designed prior the generation procedure can not be performed well. In the proposed approach we have demonstrated the use of automatically generated segmentation masks as learnable class-specific priors to guide a conditional GAN for the generation of patho-realistic samples for cytology image. We have observed that augmentation of data using the proposed pipeline called "SynCGAN" improves the performance of state of the art classifiers such as ResNet-152, DenseNet-161, Inception-V3 significantly.

View on arXiv
Comments on this paper