ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.04882
13
66

Optimization-Based Hierarchical Motion Planning for Autonomous Racing

10 March 2020
J. Vázquez
Marius Brühlmeier
Alexander Liniger
Alisa Rupenyan
John Lygeros
ArXivPDFHTML
Abstract

In this paper we propose a hierarchical controller for autonomous racing where the same vehicle model is used in a two level optimization framework for motion planning. The high-level controller computes a trajectory that minimizes the lap time, and the low-level nonlinear model predictive path following controller tracks the computed trajectory online. Following a computed optimal trajectory avoids online planning and enables fast computational times. The efficiency is further enhanced by the coupling of the two levels through a terminal constraint, computed in the high-level controller. Including this constraint in the real-time optimization level ensures that the prediction horizon can be shortened, while safety is guaranteed. This proves crucial for the experimental validation of the approach on a full size driverless race car. The vehicle in question won two international student racing competitions using the proposed framework; moreover, our hierarchical controller achieved an improvement of 20% in the lap time compared to the state of the art result achieved using a very similar car and track.

View on arXiv
Comments on this paper