ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.03955
10
45

Cross-Modal Food Retrieval: Learning a Joint Embedding of Food Images and Recipes with Semantic Consistency and Attention Mechanism

9 March 2020
Hao Wang
Doyen Sahoo
Chenghao Liu
Ke Shu
Palakorn Achananuparp
Ee-Peng Lim
Guosheng Lin
ArXivPDFHTML
Abstract

Food retrieval is an important task to perform analysis of food-related information, where we are interested in retrieving relevant information about the queried food item such as ingredients, cooking instructions, etc. In this paper, we investigate cross-modal retrieval between food images and cooking recipes. The goal is to learn an embedding of images and recipes in a common feature space, such that the corresponding image-recipe embeddings lie close to one another. Two major challenges in addressing this problem are 1) large intra-variance and small inter-variance across cross-modal food data; and 2) difficulties in obtaining discriminative recipe representations. To address these two problems, we propose Semantic-Consistent and Attention-based Networks (SCAN), which regularize the embeddings of the two modalities through aligning output semantic probabilities. Besides, we exploit a self-attention mechanism to improve the embedding of recipes. We evaluate the performance of the proposed method on the large-scale Recipe1M dataset, and show that we can outperform several state-of-the-art cross-modal retrieval strategies for food images and cooking recipes by a significant margin.

View on arXiv
Comments on this paper