ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.03572
12
12

Efficient Nonnegative Tensor Factorization via Saturating Coordinate Descent

7 March 2020
Thirunavukarasu Balasubramaniam
R. Nayak
Chau Yuen
ArXivPDFHTML
Abstract

With the advancements in computing technology and web-based applications, data is increasingly generated in multi-dimensional form. This data is usually sparse due to the presence of a large number of users and fewer user interactions. To deal with this, the Nonnegative Tensor Factorization (NTF) based methods have been widely used. However existing factorization algorithms are not suitable to process in all three conditions of size, density, and rank of the tensor. Consequently, their applicability becomes limited. In this paper, we propose a novel fast and efficient NTF algorithm using the element selection approach. We calculate the element importance using Lipschitz continuity and propose a saturation point based element selection method that chooses a set of elements column-wise for updating to solve the optimization problem. Empirical analysis reveals that the proposed algorithm is scalable in terms of tensor size, density, and rank in comparison to the relevant state-of-the-art algorithms.

View on arXiv
Comments on this paper