63
34

Probability Weighted Compact Feature for Domain Adaptive Retrieval

Fuxiang Huang
Lei Zhang
Yang Yang
Xichuan Zhou
Abstract

Domain adaptive image retrieval includes single-domain retrieval and cross-domain retrieval. Most of the existing image retrieval methods only focus on single-domain retrieval, which assumes that the distributions of retrieval databases and queries are similar. However, in practical application, the discrepancies between retrieval databases often taken in ideal illumination/pose/background/camera conditions and queries usually obtained in uncontrolled conditions are very large. In this paper, considering the practical application, we focus on challenging cross-domain retrieval. To address the problem, we propose an effective method named Probability Weighted Compact Feature Learning (PWCF), which provides inter-domain correlation guidance to promote cross-domain retrieval accuracy and learns a series of compact binary codes to improve the retrieval speed. First, we derive our loss function through the Maximum A Posteriori Estimation (MAP): Bayesian Perspective (BP) induced focal-triplet loss, BP induced quantization loss and BP induced classification loss. Second, we propose a common manifold structure between domains to explore the potential correlation across domains. Considering the original feature representation is biased due to the inter-domain discrepancy, the manifold structure is difficult to be constructed. Therefore, we propose a new feature named Histogram Feature of Neighbors (HFON) from the sample statistics perspective. Extensive experiments on various benchmark databases validate that our method outperforms many state-of-the-art image retrieval methods for domain adaptive image retrieval. The source code is available at https://github.com/fuxianghuang1/PWCF

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.