ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.02401
12
38

GOMP: Grasp-Optimized Motion Planning for Bin Picking

5 March 2020
Jeffrey Ichnowski
Michael Danielczuk
Jingyi Xu
V. Satish
Ken Goldberg
ArXivPDFHTML
Abstract

Rapid and reliable robot bin picking is a critical challenge in automating warehouses, often measured in picks-per-hour (PPH). We explore increasing PPH using faster motions based on optimizing over a set of candidate grasps. The source of this set of grasps is two-fold: (1) grasp-analysis tools such as Dex-Net generate multiple candidate grasps, and (2) each of these grasps has a degree of freedom about which a robot gripper can rotate. In this paper, we present Grasp-Optimized Motion Planning (GOMP), an algorithm that speeds up the execution of a bin-picking robot's operations by incorporating robot dynamics and a set of candidate grasps produced by a grasp planner into an optimizing motion planner. We compute motions by optimizing with sequential quadratic programming (SQP) and iteratively updating trust regions to account for the non-convex nature of the problem. In our formulation, we constrain the motion to remain within the mechanical limits of the robot while avoiding obstacles. We further convert the problem to a time-minimization by repeatedly shorting a time horizon of a trajectory until the SQP is infeasible. In experiments with a UR5, GOMP achieves a speedup of 9x over a baseline planner.

View on arXiv
Comments on this paper