24
31

Sketch-to-Art: Synthesizing Stylized Art Images From Sketches

Abstract

We propose a new approach for synthesizing fully detailed art-stylized images from sketches. Given a sketch, with no semantic tagging, and a reference image of a specific style, the model can synthesize meaningful details with colors and textures. The model consists of three modules designed explicitly for better artistic style capturing and generation. Based on a GAN framework, a dual-masked mechanism is introduced to enforce the content constraints (from the sketch), and a feature-map transformation technique is developed to strengthen the style consistency (to the reference image). Finally, an inverse procedure of instance-normalization is proposed to disentangle the style and content information, therefore yields better synthesis performance. Experiments demonstrate a significant qualitative and quantitative boost over baselines based on previous state-of-the-art techniques, adopted for the proposed process.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.