ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.12259
20
90

Blurry Video Frame Interpolation

27 February 2020
Wang Shen
Wenbo Bao
Guangtao Zhai
Li Chen
Xiongkuo Min
Zhiyong Gao
ArXivPDFHTML
Abstract

Existing works reduce motion blur and up-convert frame rate through two separate ways, including frame deblurring and frame interpolation. However, few studies have approached the joint video enhancement problem, namely synthesizing high-frame-rate clear results from low-frame-rate blurry inputs. In this paper, we propose a blurry video frame interpolation method to reduce motion blur and up-convert frame rate simultaneously. Specifically, we develop a pyramid module to cyclically synthesize clear intermediate frames. The pyramid module features adjustable spatial receptive field and temporal scope, thus contributing to controllable computational complexity and restoration ability. Besides, we propose an inter-pyramid recurrent module to connect sequential models to exploit the temporal relationship. The pyramid module integrates a recurrent module, thus can iteratively synthesize temporally smooth results without significantly increasing the model size. Extensive experimental results demonstrate that our method performs favorably against state-of-the-art methods.

View on arXiv
Comments on this paper