ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.11934
17
23

Supervised Dimensionality Reduction and Visualization using Centroid-encoder

27 February 2020
T. Ghosh
Michael Kirby
ArXivPDFHTML
Abstract

Visualizing high-dimensional data is an essential task in Data Science and Machine Learning. The Centroid-Encoder (CE) method is similar to the autoencoder but incorporates label information to keep objects of a class close together in the reduced visualization space. CE exploits nonlinearity and labels to encode high variance in low dimensions while capturing the global structure of the data. We present a detailed analysis of the method using a wide variety of data sets and compare it with other supervised dimension reduction techniques, including NCA, nonlinear NCA, t-distributed NCA, t-distributed MCML, supervised UMAP, supervised PCA, Colored Maximum Variance Unfolding, supervised Isomap, Parametric Embedding, supervised Neighbor Retrieval Visualizer, and Multiple Relational Embedding. We empirically show that centroid-encoder outperforms most of these techniques. We also show that when the data variance is spread across multiple modalities, centroid-encoder extracts a significant amount of information from the data in low dimensional space. This key feature establishes its value to use it as a tool for data visualization.

View on arXiv
Comments on this paper