6
89

The role of regularization in classification of high-dimensional noisy Gaussian mixture

Abstract

We consider a high-dimensional mixture of two Gaussians in the noisy regime where even an oracle knowing the centers of the clusters misclassifies a small but finite fraction of the points. We provide a rigorous analysis of the generalization error of regularized convex classifiers, including ridge, hinge and logistic regression, in the high-dimensional limit where the number nn of samples and their dimension dd go to infinity while their ratio is fixed to α=n/d\alpha= n/d. We discuss surprising effects of the regularization that in some cases allows to reach the Bayes-optimal performances. We also illustrate the interpolation peak at low regularization, and analyze the role of the respective sizes of the two clusters.

View on arXiv
Comments on this paper