ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.10651
9
59

A Comparative Evaluation of Temporal Pooling Methods for Blind Video Quality Assessment

25 February 2020
Zhengzhong Tu
Chia-Ju Chen
Li-Heng Chen
N. Birkbeck
Balu Adsumilli
A. Bovik
ArXivPDFHTML
Abstract

Many objective video quality assessment (VQA) algorithms include a key step of temporal pooling of frame-level quality scores. However, less attention has been paid to studying the relative efficiencies of different pooling methods on no-reference (blind) VQA. Here we conduct a large-scale comparative evaluation to assess the capabilities and limitations of multiple temporal pooling strategies on blind VQA of user-generated videos. The study yields insights and general guidance regarding the application and selection of temporal pooling models. In addition, we also propose an ensemble pooling model built on top of high-performing temporal pooling models. Our experimental results demonstrate the relative efficacies of the evaluated temporal pooling models, using several popular VQA algorithms, and evaluated on two recent large-scale natural video quality databases. In addition to the new ensemble model, we provide a general recipe for applying temporal pooling of frame-based quality predictions.

View on arXiv
Comments on this paper