ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.10502
17
19

Distributed Training of Deep Neural Network Acoustic Models for Automatic Speech Recognition

24 February 2020
Xiaodong Cui
Wei Zhang
Ulrich Finkler
G. Saon
M. Picheny
David S. Kung
ArXivPDFHTML
Abstract

The past decade has witnessed great progress in Automatic Speech Recognition (ASR) due to advances in deep learning. The improvements in performance can be attributed to both improved models and large-scale training data. Key to training such models is the employment of efficient distributed learning techniques. In this article, we provide an overview of distributed training techniques for deep neural network acoustic models for ASR. Starting with the fundamentals of data parallel stochastic gradient descent (SGD) and ASR acoustic modeling, we will investigate various distributed training strategies and their realizations in high performance computing (HPC) environments with an emphasis on striking the balance between communication and computation. Experiments are carried out on a popular public benchmark to study the convergence, speedup and recognition performance of the investigated strategies.

View on arXiv
Comments on this paper