ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.08578
21
1

Data Heterogeneity Differential Privacy: From Theory to Algorithm

20 February 2020
Yilin Kang
Jian Li
Yong Liu
Weiping Wang
ArXivPDFHTML
Abstract

Traditionally, the random noise is equally injected when training with different data instances in the field of differential privacy (DP). In this paper, we first give sharper excess risk bounds of DP stochastic gradient descent (SGD) method. Considering most of the previous methods are under convex conditions, we use Polyak-{\L}ojasiewicz condition to relax it in this paper. Then, after observing that different training data instances affect the machine learning model to different extent, we consider the heterogeneity of training data and attempt to improve the performance of DP-SGD from a new perspective. Specifically, by introducing the influence function (IF), we quantitatively measure the contributions of various training data on the final machine learning model. If the contribution made by a single data instance is so little that attackers cannot infer anything from the model, we do not add noise when training with it. Based on this observation, we design a `Performance Improving' DP-SGD algorithm: PIDP-SGD. Theoretical and experimental results show that our proposed PIDP-SGD improves the performance significantly.

View on arXiv
Comments on this paper