19
52

Learn to Design the Heuristics for Vehicle Routing Problem

Abstract

This paper presents an approach to learn the local-search heuristics that iteratively improves the solution of Vehicle Routing Problem (VRP). A local-search heuristics is composed of a destroy operator that destructs a candidate solution, and a following repair operator that rebuilds the destructed one into a new one. The proposed neural network, as trained through actor-critic framework, consists of an encoder in form of a modified version of Graph Attention Network where node embeddings and edge embeddings are integrated, and a GRU-based decoder rendering a pair of destroy and repair operators. Experiment results show that it outperforms both the traditional heuristics algorithms and the existing neural combinatorial optimization for VRP on medium-scale data set, and is able to tackle the large-scale data set (e.g., over 400 nodes) which is a considerable challenge in this area. Moreover, the need for expertise and handcrafted heuristics design is eliminated due to the fact that the proposed network learns to design the heuristics with a better performance. Our implementation is available online.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.