ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.06810
15
0
v1v2v3 (latest)

Discernible Image Compression

17 February 2020
Zhaohui Yang
Yunhe Wang
Chang Xu
Peng Du
Chao Xu
Chunjing Xu
Qi Tian
ArXiv (abs)PDFHTML
Abstract

Image compression, as one of the fundamental low-level image processing tasks, is very essential for computer vision. Tremendous computing and storage resources can be preserved with a trivial amount of visual information. Conventional image compression methods tend to obtain compressed images by minimizing their appearance discrepancy with the corresponding original images, but pay little attention to their efficacy in downstream perception tasks, e.g., image recognition and object detection. Thus, some of compressed images could be recognized with bias. In contrast, this paper aims to produce compressed images by pursuing both appearance and perceptual consistency. Based on the encoder-decoder framework, we propose using a pre-trained CNN to extract features of the original and compressed images, and making them similar. Thus the compressed images are discernible to subsequent tasks, and we name our method as Discernible Image Compression (DIC). In addition, the maximum mean discrepancy (MMD) is employed to minimize the difference between feature distributions. The resulting compression network can generate images with high image quality and preserve the consistent perception in the feature domain, so that these images can be well recognized by pre-trained machine learning models. Experiments on benchmarks demonstrate that images compressed by using the proposed method can also be well recognized by subsequent visual recognition and detection models. For instance, the mAP value of compressed images by DIC is about 0.6% higher than that of using compressed images by conventional methods.

View on arXiv
Comments on this paper