ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.06703
14
10

Investigating Simple Object Representations in Model-Free Deep Reinforcement Learning

16 February 2020
Guy Davidson
Brenden Lake
    OCL
    OffRL
ArXivPDFHTML
Abstract

We explore the benefits of augmenting state-of-the-art model-free deep reinforcement algorithms with simple object representations. Following the Frostbite challenge posited by Lake et al. (2017), we identify object representations as a critical cognitive capacity lacking from current reinforcement learning agents. We discover that providing the Rainbow model (Hessel et al.,2018) with simple, feature-engineered object representations substantially boosts its performance on the Frostbite game from Atari 2600. We then analyze the relative contributions of the representations of different types of objects, identify environment states where these representations are most impactful, and examine how these representations aid in generalizing to novel situations.

View on arXiv
Comments on this paper