ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.06659
17
16

TempLe: Learning Template of Transitions for Sample Efficient Multi-task RL

16 February 2020
Yanchao Sun
Xiangyu Yin
Furong Huang
    OffRL
ArXivPDFHTML
Abstract

Transferring knowledge among various environments is important to efficiently learn multiple tasks online. Most existing methods directly use the previously learned models or previously learned optimal policies to learn new tasks. However, these methods may be inefficient when the underlying models or optimal policies are substantially different across tasks. In this paper, we propose Template Learning (TempLe), the first PAC-MDP method for multi-task reinforcement learning that could be applied to tasks with varying state/action space. TempLe generates transition dynamics templates, abstractions of the transition dynamics across tasks, to gain sample efficiency by extracting similarities between tasks even when their underlying models or optimal policies have limited commonalities. We present two algorithms for an "online" and a "finite-model" setting respectively. We prove that our proposed TempLe algorithms achieve much lower sample complexity than single-task learners or state-of-the-art multi-task methods. We show via systematically designed experiments that our TempLe method universally outperforms the state-of-the-art multi-task methods (PAC-MDP or not) in various settings and regimes.

View on arXiv
Comments on this paper