ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.03090
14
24

BitPruning: Learning Bitlengths for Aggressive and Accurate Quantization

8 February 2020
Milovs Nikolić
G. B. Hacene
Ciaran Bannon
Alberto Delmas Lascorz
Matthieu Courbariaux
Yoshua Bengio
Vincent Gripon
Andreas Moshovos
    MQ
ArXivPDFHTML
Abstract

Neural networks have demonstrably achieved state-of-the art accuracy using low-bitlength integer quantization, yielding both execution time and energy benefits on existing hardware designs that support short bitlengths. However, the question of finding the minimum bitlength for a desired accuracy remains open. We introduce a training method for minimizing inference bitlength at any granularity while maintaining accuracy. Namely, we propose a regularizer that penalizes large bitlength representations throughout the architecture and show how it can be modified to minimize other quantifiable criteria, such as number of operations or memory footprint. We demonstrate that our method learns thrifty representations while maintaining accuracy. With ImageNet, the method produces an average per layer bitlength of 4.13, 3.76 and 4.36 bits on AlexNet, ResNet18 and MobileNet V2 respectively, remaining within 2.0%, 0.5% and 0.5% of the base TOP-1 accuracy.

View on arXiv
Comments on this paper