ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.02427
23
22

Irony Detection in a Multilingual Context

6 February 2020
Bilal Ghanem
Jihen Karoui
Farah Benamara
Paolo Rosso
Véronique Moriceau
ArXivPDFHTML
Abstract

This paper proposes the first multilingual (French, English and Arabic) and multicultural (Indo-European languages vs. less culturally close languages) irony detection system. We employ both feature-based models and neural architectures using monolingual word representation. We compare the performance of these systems with state-of-the-art systems to identify their capabilities. We show that these monolingual models trained separately on different languages using multilingual word representation or text-based features can open the door to irony detection in languages that lack of annotated data for irony.

View on arXiv
Comments on this paper