ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.01861
15
18

Rapid Adaptation of BERT for Information Extraction on Domain-Specific Business Documents

5 February 2020
Ruixue Zhang
Wei Yang
Luyun Lin
Zhengkai Tu
Yuqing Xie
Zihang Fu
Yuhao Xie
Luchen Tan
Kun Xiong
Jimmy J. Lin
ArXivPDFHTML
Abstract

Techniques for automatically extracting important content elements from business documents such as contracts, statements, and filings have the potential to make business operations more efficient. This problem can be formulated as a sequence labeling task, and we demonstrate the adaption of BERT to two types of business documents: regulatory filings and property lease agreements. There are aspects of this problem that make it easier than "standard" information extraction tasks and other aspects that make it more difficult, but on balance we find that modest amounts of annotated data (less than 100 documents) are sufficient to achieve reasonable accuracy. We integrate our models into an end-to-end cloud platform that provides both an easy-to-use annotation interface as well as an inference interface that allows users to upload documents and inspect model outputs.

View on arXiv
Comments on this paper