ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.00899
6
33

EGO-CH: Dataset and Fundamental Tasks for Visitors BehavioralUnderstanding using Egocentric Vision

3 February 2020
Francesco Ragusa
Antonino Furnari
Sebastiano Battiato
G. Signorello
G. Farinella
    EgoV
ArXivPDFHTML
Abstract

Equipping visitors of a cultural site with a wearable device allows to easily collect information about their preferences which can be exploited to improve the fruition of cultural goods with augmented reality. Moreover, egocentric video can be processed using computer vision and machine learning to enable an automated analysis of visitors' behavior. The inferred information can be used both online to assist the visitor and offline to support the manager of the site. Despite the positive impact such technologies can have in cultural heritage, the topic is currently understudied due to the limited number of public datasets suitable to study the considered problems. To address this issue, in this paper we propose EGOcentric-Cultural Heritage (EGO-CH), the first dataset of egocentric videos for visitors' behavior understanding in cultural sites. The dataset has been collected in two cultural sites and includes more than 272727 hours of video acquired by 707070 subjects, with labels for 262626 environments and over 200200200 different Points of Interest. A large subset of the dataset, consisting of 606060 videos, is associated with surveys filled out by real visitors. To encourage research on the topic, we propose 444 challenging tasks (room-based localization, point of interest/object recognition, object retrieval and survey prediction) useful to understand visitors' behavior and report baseline results on the dataset.

View on arXiv
Comments on this paper