ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.00429
19
5
v1v2 (latest)

Uncertainty Weighted Causal Graphs

2 February 2020
E.C. Garrido-Merchán
C. Puente
Alejandro Sobrino
J. A. Olivas
    CML
ArXiv (abs)PDFHTML
Abstract

Causality has traditionally been a scientific way to generate knowledge by relating causes to effects. From an imaginery point of view, causal graphs are a helpful tool for representing and infering new causal information. In previous works, we have generated automatically causal graphs associated to a given concept by analyzing sets of documents and extracting and representing the found causal information in that visual way. The retrieved information shows that causality is frequently imperfect rather than exact, feature gathered by the graph. In this work we will attempt to go a step further modelling the uncertainty in the graph through probabilistic improving the management of the imprecision in the quoted graph.

View on arXiv
Comments on this paper