ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.11597
26
31

Path Planning in Dynamic Environments using Generative RNNs and Monte Carlo Tree Search

30 January 2020
Stuart Eiffert
He Kong
Navid Pirmarzdashti
Salah Sukkarieh
ArXivPDFHTML
Abstract

State of the art methods for robotic path planning in dynamic environments, such as crowds or traffic, rely on hand crafted motion models for agents. These models often do not reflect interactions of agents in real world scenarios. To overcome this limitation, this paper proposes an integrated path planning framework using generative Recurrent Neural Networks within a Monte Carlo Tree Search (MCTS). This approach uses a learnt model of social response to predict crowd dynamics during planning across the action space. This extends our recent work using generative RNNs to learn the relationship between planned robotic actions and the likely response of a crowd. We show that the proposed framework can considerably improve motion prediction accuracy during interactions, allowing more effective path planning. The performance of our method is compared in simulation with existing methods for collision avoidance in a crowd of pedestrians, demonstrating the ability to control future states of nearby individuals. We also conduct preliminary real world tests to validate the effectiveness of our method.

View on arXiv
Comments on this paper