ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.09398
22
53

NLocalSAT: Boosting Local Search with Solution Prediction

26 January 2020
Wenjie Zhang
Zeyu Sun
Qihao Zhu
Ge Li
Shaowei Cai
Yingfei Xiong
Lu Zhang
ArXivPDFHTML
Abstract

The Boolean satisfiability problem (SAT) is a famous NP-complete problem in computer science. An effective way for solving a satisfiable SAT problem is the stochastic local search (SLS). However, in this method, the initialization is assigned in a random manner, which impacts the effectiveness of SLS solvers. To address this problem, we propose NLocalSAT. NLocalSAT combines SLS with a solution prediction model, which boosts SLS by changing initialization assignments with a neural network. We evaluated NLocalSAT on five SLS solvers (CCAnr, Sparrow, CPSparrow, YalSAT, and probSAT) with instances in the random track of SAT Competition 2018. The experimental results show that solvers with NLocalSAT achieve 27% ~ 62% improvement over the original SLS solvers.

View on arXiv
Comments on this paper