ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.08996
14
15

Mechanism Design for Multi-Party Machine Learning

24 January 2020
Mengjing Chen
Yang Liu
Weiran Shen
Yiheng Shen
Pingzhong Tang
Qiang Yang
    FedML
ArXivPDFHTML
Abstract

In a multi-party machine learning system, different parties cooperate on optimizing towards better models by sharing data in a privacy-preserving way. A major challenge in learning is the incentive issue. For example, if there is competition among the parties, one may strategically hide his data to prevent other parties from getting better models. In this paper, we study the problem through the lens of mechanism design and incorporate the features of multi-party learning in our setting. First, each agent's valuation has externalities that depend on others' types and actions. Second, each agent can only misreport a type lower than his true type, but not the other way round. We call this setting interdependent value with type-dependent action spaces. We provide the optimal truthful mechanism in the quasi-monotone utility setting. We also provide necessary and sufficient conditions for truthful mechanisms in the most general case. Finally, we show the existence of such mechanisms is highly affected by the market growth rate and provide empirical analysis.

View on arXiv
Comments on this paper