ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.08943
19
17

Active Learning for Entity Alignment

24 January 2020
M. Berrendorf
Evgeniy Faerman
Volker Tresp
ArXivPDFHTML
Abstract

In this work, we propose a novel framework for the labeling of entity alignments in knowledge graph datasets. Different strategies to select informative instances for the human labeler build the core of our framework. We illustrate how the labeling of entity alignments is different from assigning class labels to single instances and how these differences affect the labeling efficiency. Based on these considerations we propose and evaluate different active and passive learning strategies. One of our main findings is that passive learning approaches, which can be efficiently precomputed and deployed more easily, achieve performance comparable to the active learning strategies.

View on arXiv
Comments on this paper